### Lattice point counting and height bounds over number fields and quaternion algebras

#### Abstract

#### Full Text:

PDF#### References

F. Barroero. Algebraic integers of fixed degree and bounded height. preprint; arXiv:1305.0482v2.

Y. Bugeaud. Bounds for the solutions of superelliptic equations. Compositio Math., 107(2):187–219, 1997.

Y. Bugeaud and K. Gyory. Bounds for the solutions of unit equations. Acta Arith., 74(1):67– 80, 1996.

J. W. S. Cassels. An Introduction to the Geometry of Numbers. Springer, Berlin, 1959.

W. K. Chan and L. Fukshansky. Small zeros of hermitian forms over quaternion algebras. Acta Arith., 142(3):251–266, 2010.

W. K. Chan, L. Fukshansky, and G. Henshaw. Small zeros of quadratic forms missing a union of varieties. preprint, http://math.cmc.edu/lenny/papers/quad_zero-1.pdf, 2012.

R. Dietmann. Small zeros of quadratic forms avoiding a finite number of prescribed hyperplanes. Canad. Math. Bull., 52(1):63–65, 2009.

G. R. Everest and J. H. Loxton. Counting algebraic units with bounded height. J. Number Theory, 44(2):222–227, 1993.

C. Fuchs, R. Tichy, and V. Ziegler. On quantitative aspects of the unit sum number problem. Arch. Math. (Basel), 93(3):259–268, 2009.

L. Fukshansky. Small zeros of quadratic forms with linear conditions. J. Number Theory, 108(1):29–43, 2004.

L. Fukshansky. Integral points of small height outside of a hypersurface. Monatshefte fu ̈r Mathematik, 147(1):25–41, 2006.

L. Fukshansky. Siegel’s lemma with additional conditions. J. Number Theory, 120(1):13–25, 2006.

L. Fukshansky. Algebraic points of small height missing a union of varieties. J. Number Theory, 130(10):2099–2118, 2010.

E. Gaudron. Geometrie des nombres ad ́elique et lemmes de Siegel g ́en ́eralis ́es. Manuscripta Math., 130(2):159182, 2009.

P. Gritzmann and J. M. Wills. Lattice points. In Handbook of Convex Geometry, Vol. A, B, pages 765–797. North-Holland, Amsterdam, 1993.

S. Lang. Fundamentals of Diophantine geometry. Springer-Verlag, 1983.

S. Lang. Algebraic Number Theory. Springer-Verlag, 1994.

C. Liebendorfer. Linear equations and heights over division algebras. J. Number Theory, 105(1):101–133, 2004.

C. Liebendorfer. Heights and determinants over quaternion algebras. Comm. Algebra, 33(10):3699–3717, 2005.

C. Liebendorfer and G. R ́emond. Duality of heights over quaternion algebras. Monatsh. Math., 145(1):61–72, 2005.

T. Loher and D. Masser. Uniformly counting points of bounded height. Acta Arith., 111(3):277–297, 2004.

D. Masser and J. D. Vaaler. Counting algebraic numbers with large height. II. Trans. Amer. Math. Soc., 359(1):427–445, 2007.

D. G. Northcott. An inequality in the theory of arithmetic on algebraic varieties. Proc. Camb. Phil. Soc., 45:502–509 and 510–518, 1949.

R. S. Pierce. Associative Algebras. Springer-Verlag, 1982.

S. Schanuel. Heights in number fields. Bull. Soc. Math. France, 107(4):433–449, 1979.

W. M. Schmidt. Northcott’s theorem on heights. I. A general estimate. Monatsh. Math., 115(1-2):169–181, 1993.

M. A. Tsfasman and S. G. Vladut. Algebraic-Geometric Codes. Kluwer Academic Publishers, 1991.

J. D. Vaaler. Small zeros of quadratic forms over number fields. Trans. Amer. Math. Soc., 302(1):281–296, 1987.

J. D. Vaaler. Small zeros of quadratic forms over number fields, II. Trans. Amer. Math. Soc., 313(2):671–686, 1989.

T. Watanabe. Minkowski’s second theorem over a simple algebra. Monatsh. Math., 149(2):155–172, 2006.

M. Widmer. Integral points of fixed degree and bounded height. preprint.

M. Widmer. Counting points of fixed degree and bounded height. Acta Arith., 140(2):145–168, 2009.

### Refbacks

- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License.